
Expert Systems with Applications 39 (2012) 2194–2202
Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
A genetic clustering algorithm using a message-based similarity measure

Dongxia Chang a,c,⇑, Yao Zhao a, Changwen Zheng b, Xianda Zhang c

a Institute of Information Science, Beijing Jiaotong University, Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing 100044, China
b National Key Lab of Integrated Information System Technology, Institute of Software, Chinese Academy of Sciences, Beijing 100080, China
c Tsinghua Department of Automation, Tsinghua University, Beijing 100084, China

a r t i c l e i n f o a b s t r a c t
Keywords:
Clustering
Evolutionary computation
Genetic algorithms
Message passing
K-means algorithm
0957-4174/$ - see front matter � 2011 Elsevier Ltd. A
doi:10.1016/j.eswa.2011.07.009

⇑ Corresponding author at: Institute of Informati
University, Beijing Key Laboratory of Advanced Infor
Technology, Beijing 100044, China.

E-mail address: chang_dongxia@hotmail.com (D. C
In this paper, a genetic clustering algorithm is described that uses a new similarity measure based mes-
sage passing between data points and the candidate centers described by the chromosome. In the new
algorithm, a variable-length real-value chromosome representation and a set of problem-specific evolu-
tionary operators are used. Therefore, the proposed GA with message-based similarity (GAMS) clustering
algorithm is able to automatically evolve and find the optimal number of clusters as well as proper clus-
ters of the data set. Effectiveness of GAMS clustering algorithm is demonstrated for both artificial and
real-life data set. Experiment results demonstrated that the GAMS clustering algorithm has high perfor-
mance, effectiveness and flexibility.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Clustering analysis is a widely used unsupervised learning tech-
nique for data analysis and can be applied in a variety of engineer-
ing and scientific disciplines such as biology analysis, psychology,
computer vision, communications, and remote sensing. The pri-
mary objective of clustering analysis is to partition a given data
set of multidimensional vectors (patterns) into several homoge-
neous clusters such that patterns in the same cluster are similar
to each other in some sense and differentiate from those of other
clusters in the same sense. Extensive overviews of clustering algo-
rithms can be found in the literature (Everitt, Landau, & Leese, 2001;
Jain & Dubes, 1988; Jain, Murty, & Flynn, 1999; Tou & Gonzalez,
1974; Xu & Wunsch, 2005).

As an important tool for data exploration, clustering analysis
examines unlabeled data, by either constructing a hierarchical
structure, or forming a set of groups according to a prespecified
number. Clustering algorithms may be broadly divided into two
classes (Everitt et al., 2001; Xu & Wunsch, 2005): hierarchical
and partitional. Both hierarchical clustering and partitional cluster-
ing have the drawback that the number of clusters need be speci-
fied a prior. For hierarchical clustering, the problem of cluster
number selection is equivalent to decide in which level to cut
the tree. Partitional clustering algorithms typically require the
number of clusters as user input. However, the number of clusters
in a data set is always not known beforehand in most situations. A
ll rights reserved.

on Science, Beijing Jiaotong
mation Science and Network

hang).
variety of methods have been suggested try to estimate the num-
ber of clusters. The classical approach of determining the number
of clusters is the use of some validity measures (Milligan & Cooper,
1985; Pal & Bezdek, 1995; Xie & Beni, 1991). For a given range of
cluster number, the validity measure is evaluated for each given
cluster number and then the value that optimizes the validity
measure is chosen. The number of clusters searched by this
method depends on the selected clustering algorithm, whose per-
formance may rely on the initialization of the algorithm. Another
method is progressive clustering (Krishnapuram & Freg, 1992;
Krishnapuram, Frigui, & Nasraoui, 1995), the number of clusters
is overspecified. After convergence, spurious clusters are elimi-
nated and compatible clusters are merged. The main problem of
this method is the measurement of spurious and compatible clus-
ters. Moreover, they cannot guarantee that all clusters in the data
set will be found. An alternative version of the progressive cluster-
ing is to seek one cluster at a time until no more ‘‘good’’ clusters
can be found (Jolion, Meer, & Bataouche, 1991; Zhuang, Huang,
Palaniappan, & Zhao, 1996). The performances of these techniques
are also dependent on the validity functions, which are used to
evaluate the individual clusters. In order to reduce the effect of
the validity functions, a Weighted Sum Validity Function (WSVF),
which is a weighted sum of several normalized validity functions,
is proposed by Sheng, Swift, and Zhang (2005). Using more than
one validity function via a weighted sum approach tends to in-
crease the confidence of the clustering solutions. In this paper,
we attempt to use a variable-length genetic algorithm to automat-
ically evolve and find the optimal number of clusters as well as
proper clusters of the data set.

Genetic algorithms (GAs) (Goldberg, 1989; Holland, 1975; Jong,
1975; Michalewicz, 1994), an imitation of natural selection and

http://dx.doi.org/10.1016/j.eswa.2011.07.009
mailto:chang_dongxia@hotmail.com
http://dx.doi.org/10.1016/j.eswa.2011.07.009
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


D. Chang et al. / Expert Systems with Applications 39 (2012) 2194–2202 2195
survival of the fittest, have been proved to be an efficient way in
dealing with the optimization problem. In the past years, several
clustering algorithm based on GA have been developed. These
algorithms fall into two broad categories based on the representa-
tions for the clustering solutions. The first category uses a fixe-
d-length string that the user should specify the desired number
of clusters in advance to describe the clustering results (Bandyo-
padhyay & Maulik, 2002; Hall, Bözyurt, & Bezdek, 1999; Laszlo &
Mukherjee, 2007; Maulik & Bandyopadhyay, 2000; Murthy &
Chowdhury, 1996; Tucker, Crampton, & Swift, 2005). As the a priori
knowledge on the number of clusters is often unavailable in most
practical applications, it is important to design an algorithm which
can automatically evolve a proper value of the center number as
well as provide the appropriate clustering. A large variety of the
second-category algorithms are adopting variable-length string,
in which the number of cluster centers encoded into an individual
is variable. Srikanth, George, and Warsi (1995) proposed a Pitts-
bugh-style GA for clustering where each individual contains a set
of ellipsoid-shaped cluster descriptions. In this method, each clus-
ter description consists of a set of parameters specifying the size
and shape of an ellipsoid and all the parameters are encoded using
binary digits. Ghozeil and Fogel (1996) proposed an evolutionary
programming algorithm for clustering where each individual con-
tains a set of hyperbox-shaped cluster descriptions. Both these two
algorithms were making an assumption on the shape of the data
set, when the data set violates the assumption the clustering re-
sults will be unsatisfactory. In order to overcome this drawback,
Bandyopadhyay and Maulik (2002) proposed an automatic cluster-
ing algorithm which does not assume any particular underlying
shape of the data set. But when the clusters are overlapping, this
method prefers to class these clusters into one cluster. Saha and
Bandyopadhyay (2009) proposed a fuzzy, point symmetry based
genetic clustering technique (fuzzy-VGAPS), which can automati-
cally determine the number of clusters present in a data set as well
as a good fuzzy partitioning of the data.

In order to improve the performance of the GA-based
algorithms, a new genetic clustering algorithm using a message-
based similarity measure (GAMS) is presented in this paper. By uti-
lizing a problem-specific chromosome structure and a set of genet-
ic operators, the GAMS clustering algorithm can find the optimal
number of clusters as well as proper structure of the data set auto-
matically. In the new algorithm, a new similarity measure which
we call the message-based similarity is proposed. This measure
takes into account the messages exchanged between the data
points and the candidate centers described by the chromosome.
The usage of this new similarity improves the performance of the
clustering greatly.

The rest of this paper is organized as follows. Section 2 provides
the message-based similarity measure. Then a description of our
GAMS clustering algorithm is presented in Section 3. The details
of the new algorithm including the representation, the fitness eval-
uation function, the genetic operators are given in this section.
Experimental results are provided for several artificial and real-life
data sets are given in Section 4. The experimental results demon-
strate the effectiveness of the GAMS clustering algorithm. Finally,
conclusions are drawn in Section 5.
2. Message-based similarity

In this section, we propose a new similarity measure for the
clustering criteria, which we call the message-based similarity.
The measure is so called because it uses two kinds of message,
responsibility and availability, exchanged between data points
and the candidate centers, and each takes into account a different
kind of competition. Here, the responsibility and availability
between the data set X = {x1,x2, . . . ,xn} and the candidate centers
set C = {c1,c2, . . . ,cK} are defined.

For the candidate center set C, an input preference that candi-
date center ck 2 C be chosen as a center is defined firstly. The can-
didate centers with larger values of input preference are more
likely to be chosen as a center. If a priori, this value can be set
according to the priori information. Here, we define it as

IPðkÞ ¼ �1
n

Xn

i¼1

dðxi; ckÞ ¼ �
1
n

Xn

i¼1

kxi � ckk2
; k ¼ 1;2; . . . ;K: ð1Þ

And this is the mean distance between a center and all the data
points in the data set. Obviously, this value will be optimized when
ck is the center of the data set. Note that the distance measure here
is chosen with the Euclidean norm. However, any suitable distance
measure can be used to replace the Euclidean norm. Throughout
this paper, we use the Euclidean norm. In the following, the respon-
sibility and availability are defined.

The responsibility r(i,k), sent from data point xi to the candidate
center ck, reflects the evidence for how well-suited ck is to sever as
the center for point xi, taking into account other potential centers
for point xi. The availability a(i,k), sent from candidate center ck

to point xi, reflects the evidence for how appropriate it would be
for point xi to choose ck as its center, taking into account the sup-
port from other points that ck should be an center. The responsibil-
ities are computed using the rule

rði; kÞ ¼ dði; kÞ � max
k0 ;s:t:k0–k

fdði; k0Þg; i ¼ 1;2; . . . ;n; k ¼ 1;2; . . . ;K;

ð2Þ

where d(i,k) denotes the distance between data point xi and the
candidate cluster center ck. Here the distance measure used is the
Euclidean distance, i.e., d(i,k) = �kxi � ckk2. A self-responsibility,
R(k), is defined as

RðkÞ ¼ IPðkÞ � max
k0 ;s:t:k0–k

fdðck; ck0 Þg; k ¼ 1;2; . . . ;K; ð3Þ

i.e., the self-responsibility of ck is defined as its input preference
IP(k) minus the largest of the similarities between center ck and
all other candidate centers. This self-responsibility reflects evidence
that center ck is a center, based on its input preference tempered by
how ill-suited it is to be assigned to another center. A negative self-
responsibility R(k) indicates that center ck is currently better suited
as belonging to another center rather than being a center itself.

Whereas the above responsibility update lets all candidate cen-
ters compete for ownership of a data point, the following availabil-
ity update gathers evidence from data points as to whether each
candidate centers would make a good center

aði; kÞ ¼min 0;RðkÞ þ
X

i0 ;s:t:i0–i

maxf0; rði0; kÞg

8<
:

9=
;;

i ¼ 1;2; . . . ;n; k ¼ 1;2; . . . ;K: ð4Þ

This availability a(i,k) reflects evidence that point ck is a center,
based on the positive responsibilities sent to candidate center from
other points. Here, only the positive responsibilities are added, be-
cause it is only necessary for a good center to explain some data
points well, regardless of how poorly it explains other data points.

After the computation of the responsibility and availability, the
similarity between the data point and the candidate center is de-
fined by the sum of the responsibility r and the availability a. That
is to say, the similarities between data point xi and the candidate
centers C = {c1,c2, . . . ,cK} are

sði; jÞ ¼ rði; jÞ þ aði; jÞ; j ¼ 1;2; . . . ;K; ð5Þ

then xi will be assign to the cluster with the maximum similarity.



2196 D. Chang et al. / Expert Systems with Applications 39 (2012) 2194–2202
3. The GAMS clustering algorithm

In this section, the GAMS clustering algorithm is proposed. This
algorithm uses a variable-length encoded chromosome to auto-
matically clustering the data set. The number of the cluster centers
and the structure of the data set are evolved simultaneously. In the
evolutionary process, a penalized fitness evaluation function is
used to compute the fitness of the individual. A set of problem-spe-
cific evolutionary operators used are described in detail. Finally,
the number of the centers and the clusters of the data set are ac-
quired. We will introduce the GAMS clustering algorithm in the
following.
3.1. Chromosome representation

For any GA, a chromosome representation is needed to describe
each individual in the population of interest. The representation
method determines how the problem is structured in the algo-
rithm and the genetic operators that are used. Each chromosome
is made up of a sequence of genes from certain alphabet. An alpha-
bet can consist of binary digits (0 and 1), floating-point numbers,
integers, symbols (i.e., A, B, C, D), etc. In early GAs, the binary digit
was used. It has been shown that more natural representations can
get more efficient and better solutions. Michalewicz (1994) has
performed extensive experiments comparing real-valued and bin-
ary GAs and shown that the real-valued GA is more efficient in
terms of CPU time.

In our method, a real-valued problem-specific chromosome
representation is used, e.g., a chromosome corresponds to a clus-
tering result that described by the cluster centers. Each chromo-
some is described by a sequence of M = N � Ki real-valued
numbers where N is the dimension of the feature space, Ki is the
number of clusters described by the chromosome. That is to say,
the chromosome of the algorithm is written as

v ¼ v11; v12; . . . ;v1N ;v21;v22; . . . ;v2N ; . . . ;vKi1;vKi2; . . . ;vKiN
� �

;

ð6Þ

where the first N values represent the first cluster center, the next N
points represent the second center, and so on. Because Ki is different
for every chromosome and will change in the evolutionary process,
the representation is of variable-length.
3.2. Population initialization

In the GAMS clustering algorithm, an initial population of size P
can be randomly generated. For each population, a number Ki 2 [K-
min,Kmax] is generated randomly, where Kmin and Kmax is the lower
and upper bound of the number of clusters, respectively. Then Ki

points are chosen randomly from the data set but on the condition
that there are no identical points to form a chromosome, present-
ing the Ki cluster centers. This process is repeated until P chromo-
somes are generated. Here, the trivial clustering (that all the data
points are belong to one cluster) will not be considered, so Kmin

is chosen to be 2. (The trivial partitions, i.e., all the data points
are belong to one cluster, are not considered here). And Kmax is ta-
ken to be

ffiffiffi
n
p

, which is rule of thumb used by many investigators in
the literature (Pal & Bezdek, 1995).

After the population initialization, each data point of the set is
assigned to the cluster with the message-based similarity measure.
3.3. Fitness evaluation

The fitness function is used to define a fitness value to each can-
didate solution. Due to the number of the cluster centers is not def-
initely, the fitness function should consider the three measures at
the same time, as follows.

(1) A measure of the cohesiveness of clusters, favoring dense
clusters.

(2) A measure of the distance between clusters and the global
center, which favors well-separated clusters.

(3) A measure of the ‘‘implicit’’ of the number of clusters, which
favors candidate solutions with a smaller number of clusters.

That is to say, the aim is to find a set of centers for which the
within-cluster spread is small, the between-cluster spread is large
in some sense, and the number of clusters is moderate. For the cir-
cumstance where the number of clusters is know, one popular
measure is (Fukunaga, 1990)

J ¼ max TrfS�1
W SBg

n o
; ð7Þ

where SW is the within-cluster variation and SB is the between-clus-
ter variation. SW measures how compact or tight the clusters are
and it is defined as

SW ¼
XK

i¼1

X
xj2Ci

ðxj � liÞ
Tðxj � liÞ; ð8Þ

where li is the center of Ci and is defined as li ¼ 1
ni

P
x2Ci

x; ni is the
cardinality of Ci, i.e., the number of points in cluster Ci. SB measures
how scatter the cluster centers are from the sample mean and it is
given by

SB ¼
XK

i¼1

niðli � lÞTðli � lÞ; ð9Þ

where l is the sample mean

l ¼ 1
n

Xn

l¼1

xl ¼
1
n

XK

i¼1

nili: ð10Þ

But this measure is not considering the influence of the number of
the centers on the clustering result. Here, we define a penalized cost
function as

J ¼ 1
K2 TrfS�1

W SBg; ð11Þ

where K is the number of cluster centers of the chromosome. This
cost function ensures that the individual is penalized to discourage
partitions that have more clusters.

3.4. Evolutionary operators

In the evolutionary process, seven types of operators: one cross-
over operator and six mutation operators are used. These operators
manipulate the centers to evolve chromosomes into possibly better
ones. The application of each operator is controlled by a probability.

3.4.1. Crossover
The main goal of the crossover operator is to create diversified

and potentially promising new chromosomes. Crossover combines
the features of two parent chromosomes to form two offspring by
swapping corresponding segments of the parents. The intuition be-
hind the applicability of the crossover operator is information ex-
change between different potential solutions. Simple crossover is
used in this paper. Note that although the crossover points can fall
in different locations in the two individuals, they are restricted to
fall on the same location within each cluster description. For in-
stance, suppose crossover occurs between the following two
individuals



D. Chang et al. / Expert Systems with Applications 39 (2012) 2194–2202 2197
ð6:65;9:84Þð9:98; j6:18Þð13:65;11:03Þ½ �
ð12:60;10:21Þð6:49;9:90Þð11:30; j9:72Þð9:75;13;95Þð9:90;7:11Þð18:21;12:20Þ½ �:

The crossover points fell in the second and the third cluster descrip-
tions of the two parent individuals, respectively, but both crossover
points fell right after the first coordinate within each cluster
description. The number of centers of the parent is three and six,
respectively. The children of the above crossover are:

ð6:65;9:84Þð9:98; j9:72Þð9:75;13;95Þð9:90;7:11Þð18:21;12:20Þ½ �
ð12:60;10:21Þð6:49;9:90Þð11:30; j6:18Þð13:65;11:03Þ½ �:

The number of the centers of the two children is five and four,
respectively.

3.4.2. Mutation
Mutation arbitrarily alters one or more genes of a selected

chromosome, by a random change with a probability equal to the
mutation rate. The intuition behind the mutation operator is the
introduction of some extra variability into the population. The fol-
lowing mutation operators are investigated.

1. Perturb mutator
The perturb mutator is used to impose a random change to the
coordinates of a cluster center in an individual. Given an indi-
vidual, the operator randomly selects a cluster center and
changes the coordinates of this center randomly. This mutate
operator is not change the number of the cluster centers. In
the following Ki denotes the number of the cluster centers of
the individual under mutation.

2. Insert mutator
The insert mutator operates on an individual by inserting ran-
domly generated new center into the individual. Given an indi-
vidual representing a partition:
� Randomly generate m 2 [1,Ki];
� Select a point in the data set at random and insert it into the

individual at the mth location;
� Set Ki = Ki + 1.

3. Delete mutator
The delete mutator randomly deletes a center from an individ-
ual which has the opposite effect of the insert mutator. Given an
individual representing a partition:
� Randomly generate m 2 [1,Ki];
� Delete the mth center of the individual;
� Set Ki = Ki � 1.

4. Merge mutator
The merge mutator randomly merges two sets represented by
two centers. Given an individual representing a partition:
� Pick values m1 and m2 satisfying m1, m2 2 [1,Ki] at random;
� Delete the cluster described by the m2th center;
� Recompute the value of the m1th center of the individual

according to the following equation
cnew
m1
¼ jCm1 jcm1 þ jCm2 jcm2

jCm1 j þ jCm2 j
;

where jCmi
j be the cardinality of the mith cluster and cmi

be
the center of the mith cluster, i = 1,2;

� Set Ki = Ki + 1;
5. Split mutator

The split mutator splits one cluster into two clusters. Given an
individual representing a partition:
� Randomly generate m 2 [1,Ki];
� Split the mth center into two subclusters each of k1 and k2

elements and k1 + k2 = jCmj;
� Compute the centers of the two new clusters;
� Set Ki = Ki + 1.
6. Move mutator
Move mutator transfers one data point from one cluster to

another cluster. Given an individual representing a partition:
� Randomly generate m 2 [1,N], l 2 [1,Ki] and let xm 2 Cj;
� If Cl – Cj, then move xm from Cj into Cl, else goto the first

step;
� Recompute the ceters of Cj and Cl, and change the corre-

sponding values of the individual.

3.5. Description of the algorithm

In our new algorithm, a chromosome with variable-length rep-
resenting the cluster is used and each chromosome is individually
evaluated by using the fitness function described in Section 3.3.
The data set with the proposed algorithm can self-organize the
cluster number and cluster structures. In the evolutionary loop, a
set of individuals is selected for evolutionary crossover and muta-
tion. A roulette wheel selection of P slots is used to implement the
selection process. The chance for a chromosome to be selected is
proportional to its fitness value.

An evolutionary operator is selected on the basis of a probabil-
ity distribution. The crossover operator transforms two individuals
(parents) into two offspring by combining parts from each parent.
The mutation operator operates on a single individual and creates
an offspring by mutating that individual (see Section 3.4 for details
on evolutionary operators). The newly generated individuals are
evaluated on the basis of the fitness function and form the new
generation. The elitist strategy (Jong, 1975) is used in each gener-
ation by replacing the worst chromosome of currently population
with the best one seen up to the previous generation. The process
terminates after some number of generations, which can be fixed
either by the user or determined dynamically by the program itself,
and the best chromosome obtained is taken to be the best solution.

The GAMS clustering algorithm is described as follows:

1. Initialize a group of cluster centers with size of P, only non-
trivial clustering (that all the data points are not belong to
one cluster) are considered. Each data point of the set is
assigned to the cluster with the new similarity measure
described in Section 2.

2. Evaluate each chromosome and copy the best chromosome
say pbest of the initial population in a separate location.

3. If the termination condition is not reached, go to Step 4.
Otherwise, select the best individual from the population
as the best clustering result.

4. Select individuals from the population for crossover and
mutation.

5. Apply crossover operator to the selected individuals based
on the crossover probability.

6. Apply mutation operator to the selected individuals based
on the mutation probability.

7. Evaluate the newly generated candidates.
8. Compare the worst chromosome in the new population with

pbest in term of their fitness values. If the worst one is worse
than pbest, then replace it by pbest.

9. Find the best chromosome in the new population and
replace pbest.

10. Go back to Step 3.

4. Experiments results

In this section, the performances of the GAMS clustering, GCUK-
clustering (Bandyopadhyay & Maulik, 2002) and K-means algo-
rithms are compared through the experiments. The experiments
were conducted on both artificial data and real-life data from the
UCI Machine Learning Repository. The results show that GAMS



2198 D. Chang et al. / Expert Systems with Applications 39 (2012) 2194–2202
clustering algorithm has high performance, effectiveness and
flexibility.

In the experiments, the following artificial data sets are similar
to those used in Bandyopadhyay and Maulik (2002) these were
generated by us, but keeping the structure of the clusters as close
as possible to that described in Bandyopadhyay and Maulik (2002)
and three real-life data sets were used. These data sets used are di-
vided into three groups.

(1) Group 1: This group contains three data sets. The
clusters present in these data sets are without over-
lap and completely separable.

Data 1: This data set consists of 76 two dimensional data
points distributed over three clusters. This data
set is shown in Fig. 1(a).

Data 2: This data set consists of 400 three dimensional data
points distributed over four hyper-spherical dis-
joint clusters where each cluster contains 100 data
points. This data set is shown in Fig. 2(a).

Data 3: This data set is two dimensional and comprises a
ring-shaped cluster, a rectangular cluster and a lin-
ear cluster as shown in Fig. 3(a). The total number
of points equal to 400 and three clusters.

(2) Group 2: This group consists of two data sets. The
clusters present in these data sets are highly
overlapping.

Data 4: This data set consists of 150 three dimensional data
points distributed over three clusters as shown in
Fig. 4(a). Each cluster is consisting of 50 data points.
Two of the clusters are overlapping.

Data 5: This data set consists of 250 two dimensional data
points distributed over five spherically shaped clus-
ters as shown in Fig. 5(a). The clusters present here
are highly overlapping, each consisting of 50 data
points.

(3) Group 3: This category consists of three real-life
data sets: Iris, Breast Cancer and Wine.

Iris: Iris data set consists of 150 data points distributed
over three clusters. Each cluster has 50 points. This
data set represents different categories of irises
characterized by 4 feature values in centimeters:
the sepal length, sepal width, petal length and the
petal width. This data set has three classes Setosa,
M
ut

at
io

n 
Pr

ob
ab

ilit
y

Iteration Max. No. 
of Iterations 

Fig. 1. The variation of mutation probability with the number of iterations adopted
in the GAMS clustering algorithm.
Versicolor and Virginica. It is known that the last
two classes have a large amount of overlap while
the first class is linearly separable.

Breast cancer: This data set consists of 683 sample points. Each
pattern has nine features corresponding to clump
thickness, cell size uniformity, cell shape unifor-
mity, marginal adhesion, single epithelial cell size,
bare nuclei, bland chromatin, normal nucleoli and
mitoses. There are two categories in the data.

Wine: This is the wine recognition data consisting of 178
instances with 13 features resulting from a chemi-
cal analysis of wines grown in the same region in
Italy but derived from three different cultivars.
The analysis determined the quantities of 13 con-
stituents found in each of the three types of wine.
For convenience, we summarize the eight sets in
Table 1 with the characteristics of the data sets.
The four columns show the number of data points
n, the number of clusters K, the dimension of the
feature space d, and the number of points in every
cluster for each data set.

In the experiments, the population size is taken as 50. The
crossover and mutation probabilities for GUCK-clustering algo-
rithm are pc = 0.8 and pm = 0.001, respectively. For the GAMS clus-
tering algorithm, the mutation probability varies follow the
function (Murthy & Chowdhury, 1996) shown in Fig. 1. We have
started with a mutation probability value of pm = 0.5. The value is
then varied as a step function of the number of iterations until it
reaches a value of 0.001. The minimum value of the mutation prob-
ability is taken to be 0.001. The probabilities for the six mutation
operators are set to be equal to 1/6. The total number of genera-
tions is equal to 50. For the K-means algorithm, the actual number
of clusters is known prior. All the experiments run for 20 indepen-
dent times. Table 2 shows the mean and standard deviations of the
number of classes obtained by the two automatic clustering algo-
rithms (GCUK-clustering and GAMS), averaged over 20 indepen-
dent runs (Here we only show the results for the data sets of
Group 2 and Group 3). It also shows the percentage of runs that
managed to yield the correct number of classes for each data set.
From Table 2, it can be seen that for all the data sets in Group 2
and Group 3, GAMS obtains the exact K (the final result of K is ob-
tained through voting). But the GCUK-clustering just gets the opti-
mal result in Data 5 data set and Breast data set and cannot get the
exact K in the other data sets.

In the following, the clustering results of artificial data sets ob-
tained by K-means, GCUK-clustering and GAMS algorithm are gi-
ven in Figs. 2–6.

From Figs. 2–4, we can see that all algorithms work well for the
data sets in Group1. For Data 1 and Data 2, all algorithms can sep-
arate the data points correctly. For Data 3, the performance of
GAMS algorithm is superior to other algorithms for the number
of data points with wrong cluster number is small.

Figs. 5 and 6 provide the clustering results for Data 4 and Data 5.
It is clear that the performance of the GAMS algorithm is better
than other algorithms. Especially for Data 4, GCUK-clustering algo-
rithm only gets two clusters. In order to compare them further, the
Adjusted Rand Index is used.

The Adjusted Rand Index (Hubert, 1985) measures the agree-
ment of the clustering result with the true cluster structure. Here,
it is used to measure the clustering performance for the data sets of
Group 2 and Group 3. Let nij denote the number of points in cluster
i of partition produced by the algorithm (i = 1,2, . . . ,cm) and group j
of the true cluster structure (j = 1,2, . . . ,ct), where cm and ct are the
number of clusters of obtained by the algorithm and the true struc-
ture, respectively. Then, ni� ¼

Pct
j¼1nij;n�j

Pcm
i¼1nij, and n give the mar-



0 2 4 6 8
2.5

3

3.5

4

4.5

5

5.5

6

(a)
0 2 4 6 8

2.5

3

3.5

4

4.5

5

5.5

6

(b)

0 2 4 6 8
2.5

3

3.5

4

4.5

5

5.5

6

(c)
0 2 4 6 8

2.5

3

3.5

4

4.5

5

5.5

6

(d)
Fig. 2. The original Data 1 and the clustering results of Data 1 obtained by the three algorithms for (a) the original data set; (b) K-means; (c) GCUK-clustering; (d) GAMS.

−10
0

10
20

−20

0

20

0

10

20

(a) −10
0

10
20

−20

0

20

0

10

20

(b)

−10
0

10
20

−20

0

20

0

10

20

(c) −10
0

10
20

−20

0

20

0

10

20

(d)
Fig. 3. The original Data 2 and the clustering results of Data 2 obtained by the three algorithms for (a) the original data set; (b) K-means; (c) GCUK-clustering; (d) GAMS.

D. Chang et al. / Expert Systems with Applications 39 (2012) 2194–2202 2199
ginals and grand total for such a classification table. Given these
values, the Adjusted Rand index is defined as (Hubert, 1985)
ARI ¼
Pcm

l¼1

Pct
k¼1C2

nlk
�
Pcm

l¼1C2
nl�
�
Pct

k¼1C2
n�k

h i
=C2

n

Pcm
l¼1C2

nl�
þ
Pct

k¼1C2
n�k

h i
=2�

Pcm
l¼1C2

nl�
�
Pct

k¼1C2
n�k

h i
=C2

n

; ð12Þ
where C2
n ¼ nðn� 1Þ=2. The Adjusted Rand Index return values in

the interval [0,1] and the optimum score is 1, with higher scores
being ‘‘better’’. We will use this index to measure the performance
of the clustering results obtained by the algorithms for Group 2 and
Group 3.

For each data set we have conducted the experiment 20 inde-
pendent times with randomly generated initialization and the
average value recorded to account for the stochastic nature of
the algorithm. Table 3 gives the mean and variance of the Adjusted
Rand Index obtained by the three techniques for Group 2 and
Group 3. As seen from the table, the Adjusted Rand Index obtained
by GAMS clustering algorithm is always better than that of the
other algorithms for the data sets. For the Iris data set, GCUK-clus-
tering algorithm only gets two clusters, one corresponding to the



0 2 4 6 8 10
0

2

4

6

8

10

12

(d)
0 2 4 6 8 10
0

2

4

6

8

10

12

(c)

0 2 4 6 8 10
0

2

4

6

8

10

12

(a)
0 2 4 6 8 10
0

2

4

6

8

10

12

(b)

Fig. 4. The original Data 3 and the clustering results of Data 3 obtained by the three algorithms for (a) the original data set; (b) K-means; (c) GCUK-clustering; (d) GAMS.

−1
0

1

−5

0

5
0

5

10

15

(b)−1
0

1

−5

0

5
0

5

10

15

(a)

−1
0

1

−5

0

5
0

5

10

15

(d)−1
0

1

−5

0

5
0

5

10

15

(c)
Fig. 5. The original Data 4 and the clustering results of Data 4 obtained by the three algorithms for (a) the original data set; (b) K-means; (c) GCUK-clustering; (d) GAMS.

Table 1
Eight data sets used in our experiments.

Data set M K d Points per cluster

Data 1 76 3 2 43, 20, 13
Data 2 400 4 3 100 per cluster
Data 3 400 3 2 100, 150, 150
Data 4 150 3 3 50 per cluster
Data 5 250 5 2 50 per cluster
Iris 150 3 4 50 per cluster
Breast 683 2 10 444, 239
Wine 178 3 13 59, 71, 48

Table 2
Mean number of clusters found (with standard deviation) and percentage of
successful runs obtained by the two automatic algorithms over 20 independent runs
on the five data sets in Group 2 and Group 3.

Data set Actual number of clusters GCUK-clustering GAMS

Data 4 3 2.05 ± 0.0500, 1 2.9 ± 0.0947, 18
Data 5 5 4.70 ± 0.4316, 13 4.85 ± 0.2395, 15
Iris 3 5.75 ± 1.5658, 2 3 ± 0.0947, 18
Breast 2 2.3 ± 0.2211, 14 2 ± 0, 20
Wine 3 9.1792 ± 0.6122, 0 2.95 ± 0.1553, 18

2200 D. Chang et al. / Expert Systems with Applications 39 (2012) 2194–2202



0 5 10 15 20
4

6

8

10

12

14

16

(a)
0 5 10 15 20
4

6

8

10

12

14

16

(b)

0 5 10 15 20
4

6

8

10

12

14

16

(c)
0 5 10 15 20
4

6

8

10

12

14

16

(d)
Fig. 6. The original Data 5 and the clustering results of Data 5 obtained by the three algorithms for (a) the original data set; (b) K-means; (c) GCUK-clustering; (d) GAMS.

Table 3
The mean and variance of the Adjusted Rand Index obtained by K-means, GCUK-
clustering, and GAMS algorithms for Group 2 and Group 3.

K-means GCUK-clustering GAMS

Data 4 0.6091 ± 0.0078 ⁄ 0.7776 ± 0.0013
Data 5 0.7056 ± 0.0152 0.7322 ± 0.0215 0.9883 ± 9.3683e�4

Iris 0.6357 ± 0.0017 ⁄ 0.8138 ± 0.0037
Breast 0.8261 ± 0.0041 0.8695 ± 1.4442e�4 0.8884 ± 6.5947e�5

Wine 0.6807 ± 0.0054 ⁄ 0.7662 ± 0.0165

Table 4
Result of MANOVA testing by K-means, GCUK-clustering and GAMS algorithms on
two data sets, here gm stands for Mahalanobis distance and datanamei denotes the
cluster number of the data set.

K-means GCUK-clustering GAMS

d p gm d p gm d p gm

Iris1 0 1 0 0 1 0
Iris2 0 0.2640 0.2417 ⁄ 0 0.4110 0.1199
Iris3 0 0.0798 0.3143 0 0.4129 0.1169
Breast1 0 0.9594 0.0169 0 0.9638 0.0164 0 0.9863 0.0125
Breast2 0 0.9992 0.0036 0 0.9999 0.0072 0 1 0.0016
wine1 0 0.9485 0.2032 0 0.9797 0.1641
Wine2 0 0.9081 0.2528 ⁄ 0 0.9955 0.1146
Wine3 0 0.8956 0.2976 0 0.9999 0.0753

D. Chang et al. / Expert Systems with Applications 39 (2012) 2194–2202 2201
first class, and the other to the combination of the last clusters.
While the GAMS clustering algorithm provides three clusters for
this data set, and the performance is better than that of the
K-means.

In order to compare the algorithms more careful, the multivar-
iate analysis of variance (MANOVA) technique (Anderson, 1984) is
used to assess the cluster differences between the actual clusters
and those obtained by K-means, GCUK-clustering and GAMS.
MANOVA is a powerful statistical tool used to provide information
on the nature and predictive power of the independent measures.
It measures the group difference between two or more metric
dependent variables simultaneously, using a set of categorical
non-metric variables. Here, the categorical non-metric variables
are the cluster labels. The results are given in Table 3. In the exper-
iment, MANOVA tests the null hypothesis that the mean of each
group is the same dimensional multivariate vector, and that any
difference observed in the sample is due to random chance. There
are three outputs, d, p and a distance between the group means, in
the experiment. If d = 0, there is no evidence to reject the null
hypothesis; while if d = 1, we can reject the null hypothesis that
the means are the same but we cannot reject the hypothesis that
the multivariate means lie on the same line. Similarly, if d = 2, then
the multivariate means may lie on the same plane in n-dimen-
sional space, but not on the same line. p is the probability, com-
puted assuming that the null hypothesis is true. The smaller the
p is, the stronger is the evidence against the null hypothesis
provided by the data. If p < 0.05, then we will reject the null
hypothesis. The gm in Table 4 represents the Mahalanobis distance
between each pair of group means.

It can be seen from Table 4 that GAMS clustering algorithm is
superior to the other algorithms. For the Iris data set, GAMS clus-
tering algorithm can find three clusters. But GCUK-clustering algo-
rithm only provided two clusters, one corresponding to the first
class, and the other to the combination of the last clusters. For
the first cluster of the Iris data set, all the algorithms are able to
find the first cluster correctly, (d = 0, p = 1, gm = 0). This signifies
that means of data items forming cluster 1 after application of
the algorithms and that of the actual cluster are the same. GAMS
cannot find the other two clusters accurately for the two sets.
But p value of GAMS is better than p values of K-means algorithm.
This is also evident from the gm value obtained by GAMS is smaller
than the gm value obtained by all the other algorithms. For the
breast data set, all the algorithms give high correspondence to
the actual clusters, for both cluster one and cluster two. This is evi-
dent from the d, p and gm values in Table 4. For all the algorithms,
we obtain d = 0, but the p value of GAMS is much better than p val-
ues of other algorithms. The gm value of GAMS is also smaller than
the values obtained by other algorithms.



2202 D. Chang et al. / Expert Systems with Applications 39 (2012) 2194–2202
5. Conclusions

In this paper, a novel evolutionary algorithm, called GAMS, has
been developed for clustering problem with unknown cluster
number. The GAMS clustering algorithm utilizes domain specific
knowledge to make decision and can find the optimal number of
clusters as well as the cluster centers automatically. As the number
of clusters is not known a priori in most practical circumstance,
GAMS clustering algorithm can be used more widely. The new sim-
ilarity measure used takes into account both the distance between
the data point with the nearest center and that with neighboring
data points. This will improve the performance of the clustering
greatly. In order to evaluate the performance of the individual, a
new cost function which penalizes the clusters that have more
clusters was defined. The superiority of the GAMS clustering algo-
rithm over GCUK-clustering, and K-means algorithm has been
demonstrated by the experiments. All the experiment results de-
scribed in this paper demonstrated that our algorithm can find
proper structures of various data sets.

Acknowledgments

This paper was supported by the Fundamental Research Funds
for the Central Universities of China (2011JBM026); the China Post-
doctoral Science Foundation (00480190); the Beijing Municipal
Natural Science Foundation (4113075).

References

Anderson, T. W. (1984). An introduction to multivariate statistical analysis. New York:
Wiley.

Bandyopadhyay, S., & Maulik, U. (2002). An evolutionary technique based on K-
means algorithm for optimal clustering in RN. Information Sciences, 146,
221–237.

Bandyopadhyay, S., & Maulik, U. (2002). Genetic clustering for automatic evolution
of clusters and application to image classification. Pattern Recognition, 35,
1197–1208.

Everitt, B., Landau, S., & Leese, M. (2001). Cluster Analysis. London Arnold.
Fukunaga, K. (1990). Statistical pattern recognition (2nd ed.). San Diego, CA:

Academic Press.
Ghozeil, A., & Fogel, D. B. (1996). Discovering patterns in spatial data using

evolutionary programming. In Genetic programming 1996: Proceedings of the 1st
annual conference (pp. 521–527). MIT Press.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine
learning. Reading, MA: Addison-Wesley.
Hall, L. O., Bözyurt, I., & Bezdek, J. C. (1999). Clustering with a genetically optimized
approach. IEEE Transactions on Evolutionary Computation, 3(2), 103–112.

Holland, J. H. (1975). Adaptation in natural and artificial systems. University of
Michigan Press.

Hubert, A. (1985). Comparing partitions. Journal of Classification, 2, 193–198.
Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. Englewood Cliffs:

Prentice-Hall.
Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM

Computing Surveys, 31(3), 264–322.
Jolion, J. M., Meer, P., & Bataouche, S. (1991). Robust clustering with applications in

computer vision. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(8), 791–802.

Jong, K. A. De (1975). An analysis of the behavior of a class of genetic adaptive
Systems, Doctoral dissertation, University of Michigan, Ann Arbor, Michigan.

Krishnapuram, R., & Freg, C. P. (1992). Fitting an unknown number of lines and
planes to image data through compatible cluster merging. Pattern Recognition,
25(4), 385–400.

Krishnapuram, R., Frigui, R., & Nasraoui, O. (1995). Fuzzy and possibilistic shell
clustering algorithms and their application to boundary detection and surface
approximation. IEEE Transactions on Fuzzy Systems, 3(1), 29–60.

Laszlo, M., & Mukherjee, S. (2007). A genetic algorithm that exchanges
neighboring centers for k-means clustering. Pattern Recognition Letter, 28,
2359–2366.

Maulik, U., & Bandyopadhyay, S. (2000). Genetic algorithm based clustering
technique. Pattern Recognition, 33, 1455–1465.

Michalewicz, Z. (1994). Genetic algorithms + data structures = evolution programs.
New York: Springer. AI Series.

Milligan, G. W., & Cooper, M. C. (1985). An examination of procedures for
determining the number of clusters in a data set. Psychometrika, 50, 159–179.

Murthy, C. A., & Chowdhury, N. (1996). In search of optimal clusters using genetic
algorithms. Pattern Recognition Letters, 17, 825–832.

Pal, N. R., & Bezdek, J. C. (1995). On cluster validity for fuzzy c-means model. IEEE
Transactions on Fuzzy Systems, 1, 370–379.

Saha, S., & Bandyopadhyay, S. (2009). A new point symmetry based fuzzy genetic
clustering technique for automatic evolution of clusters. Information Science,
179(19), 3230–3246.

Sheng, W. G., Swift, S., Zhang, L. S., et al. (2005). A weighted sum validity function
for clustering with a hybrid niching genetic algorithm. IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, 35(6), 1156–1167.

Srikanth, R., George, R., Warsi, N., et al. (1995). A variable-length genetic algorithm
for clustering and classification. Pattern Recognition Letters, 16, 789–800.

Tou, J. T., & Gonzalez, R. C. (1974). Pattern recognition principles. Reading, MA:
Addison-Wesley.

Tucker, A., Crampton, J., & Swift, S. (2005). RAFGA: An efficient representation and
crossover for grouping genetic algorithms. Evolutionary Computation, 13(4),
477–499.

Xie, X. L., & Beni, G. (1991). A validity measure for fuzzy clustering. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 13, 841–847.

Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on
Neural Networks, 16(3), 645–678.

Zhuang, X., Huang, Y., Palaniappan, Y., & Zhao, Y. (1996). Gaussian mixture density
modeling, decomposition and applications. IEEE Transactions on Image
Processing, 5(9), 1293–1302.


	A genetic clustering algorithm using a message-based similarity measure
	1 Introduction
	2 Message-based similarity
	3 The GAMS clustering algorithm
	3.1 Chromosome representation
	3.2 Population initialization
	3.3 Fitness evaluation
	3.4 Evolutionary operators
	3.4.1 Crossover
	3.4.2 Mutation

	3.5 Description of the algorithm

	4 Experiments results
	5 Conclusions
	Acknowledgments
	References


